Crystal structure of ferric-yersiniabactin, a virulence factor of Yersinia pestis.

نویسندگان

  • M Clarke Miller
  • Sean Parkin
  • Jacqueline D Fetherston
  • Robert D Perry
  • Edward Demoll
چکیده

Yersiniabactin (Ybt), the siderophore produced by Yersinia pestis, has been crystallized successfully in the ferric complex form and the crystal structure has been determined. The crystals are orthorhombic with a space group of P2(1)2(1)2(1) and four distinct molecules per unit cell with cell dimensions of a=11.3271(+/-0.0003)A, b=22.3556(+/-0.0006)A, and c=39.8991(+/-0.0011)A. The crystal structure of ferric Ybt shows that the ferric ion is coordinated as a 1:1 complex by three nitrogen electron pairs and three negatively charged oxygen atoms with a distorted octahedral coordination. The molecule displays a Delta absolute configuration with chiral centers at N2, C9, C10, C12, C13, and C19 in R, R, R, R, S, S configurations, respectively. Few of the crystal structures of siderophores have been solved, and those which have been are of simple hydroxamate and catechol types such as ferrioxamine B and agrobactin. To our knowledge this is the first report of the ferric crystal structure of 5-member heterocycle siderophore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia

Low molecular weight siderophores are used by many living organisms to scavenge scarcely available ferric iron. Presence of at least a single siderophore-based iron acquisition system is usually acknowledged as a virulence-associated trait and a pre-requisite to become an efficient and successful pathogen. Currently, it is assumed that yersiniabactin (Ybt) is the solely functional endogenous si...

متن کامل

Role of the Yersinia pestis Yersiniabactin Iron Acquisition System in the Incidence of Flea-Borne Plague

Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt) siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that Ybt would be an essential ...

متن کامل

The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague.

The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in stra...

متن کامل

The Yersiniabactin-Associated ATP Binding Cassette Proteins YbtP and YbtQ Enhance Escherichia coli Fitness during High-Titer Cystitis.

The Yersinia high-pathogenicity island (HPI) is common to multiple virulence strategies used by Escherichia coli strains associated with urinary tract infection (UTI). Among the genes in this island are ybtP and ybtQ, encoding distinctive ATP binding cassette (ABC) proteins associated with iron(III)-yersiniabactin import in Yersinia pestis In this study, we compared the impact of ybtPQ on a mod...

متن کامل

The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague.

Iron acquisition from the host is an important step in the pathogenic process. While Yersinia pestis has multiple iron transporters, the yersiniabactin (Ybt) siderophore-dependent system plays a major role in iron acquisition in vitro and in vivo. In this study, we determined that the Ybt system is required for the use of iron bound by transferrin and lactoferrin and examined the importance of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of inorganic biochemistry

دوره 100 9  شماره 

صفحات  -

تاریخ انتشار 2006